000 03176nam a22004578i 4500
001 CR9781316104514
005 20250919142052.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 140520s2015||||enk o ||1 0|eng|d
020 _a9781316104514 (ebook)
020 _z9781107088061 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aQA601
_b.S785 2015
082 0 0 _a621.36/7
_223
100 1 _aStarck, Jean-Luc,
_eauthor.
245 1 0 _aSparse image and signal processing :
_bwavelets and related geometric multiscale analysis /
_cJean-Luc Starck, Fionn Murtagh, Jalal Fadili.
246 3 _aSparse Image & Signal Processing
250 _aSecond edition.
264 1 _aCambridge :
_bCambridge University Press,
_c2015.
300 _a1 online resource (xix, 428 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
520 _aThis thoroughly updated new edition presents state of the art sparse and multiscale image and signal processing. It covers linear multiscale geometric transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Along with an up-to-the-minute description of required computation, it covers the latest results in inverse problem solving and regularization, sparse signal decomposition, blind source separation, in-painting, and compressed sensing. New chapters and sections cover multiscale geometric transforms for three-dimensional data (data cubes), data on the sphere (geo-located data), dictionary learning, and nonnegative matrix factorization. The authors wed theory and practice in examining applications in areas such as astronomy, including recent results from the European Space Agency's Herschel mission, biology, fusion physics, cold dark matter simulation, medical MRI, digital media, and forensics. MATLABĀ® and IDL code, available online at www.SparseSignalRecipes.info, accompany these methods and all applications.
505 0 _aIntroduction to the world of sparsity -- The wavelet transform -- Redundant wavelet transform -- Nonlinear multiscale transforms -- Multiscale geometric transforms -- Sparsity and noise removal -- Linear inverse problems -- Morphological diversity -- Sparse blind source separation -- Dictionary learning -- Three-dimensional sparse representations -- Multiscale geometric analysis on the sphere -- Compressed sensing -- This book's take home message.
650 0 _aTransformations (Mathematics)
650 0 _aSignal processing.
650 0 _aImage processing.
650 0 _aSparse matrices.
650 0 _aWavelets (Mathematics)
700 1 _aMurtagh, Fionn,
_eauthor.
700 1 _aFadili, Jalal,
_eauthor.
776 0 8 _iPrint version:
_z9781107088061
856 4 0 _uhttps://doi.org/10.1017/CBO9781316104514
907 _a.b16848056
_b2020-12-22
_c2020-12-22
942 _n0
998 _a1
_b2020-12-22
_cm
_da
_feng
_genk
_y0
_z.b16848056
999 _c652148
_d652148