000 02425nam a22003858i 4500
001 CR9781107360068
005 20250919142049.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 130308s2014||||enk o ||1 0|eng|d
020 _a9781107360068 (ebook)
020 _z9781107044241 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aQA169
_b.L438 2014
082 0 0 _a512/.62
_223
100 1 _aLeinster, Tom,
_d1971-
_eauthor.
245 1 0 _aBasic category theory /
_cTom Leinster.
264 1 _aCambridge :
_bCambridge University Press,
_c2014.
300 _a1 online resource (viii, 183 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aCambridge studies in advanced mathematics ;
_v143
500 _aTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
505 0 _aCategories, functors and natural transformations -- Adjoints -- Interlude on sets -- Representables -- Limits -- Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem.
520 _aAt the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.
650 0 _aCategories (Mathematics)
776 0 8 _iPrint version:
_z9781107044241
830 0 _aCambridge studies in advanced mathematics ;
_v143.
856 4 0 _uhttps://doi.org/10.1017/CBO9781107360068
907 _a.b16847118
_b2020-12-22
_c2020-12-22
942 _n0
998 _a1
_b2020-12-22
_cm
_da
_feng
_genk
_y0
_z.b16847118
999 _c652054
_d652054