| 000 | 02962nam a22004458i 4500 | ||
|---|---|---|---|
| 001 | CR9781316182635 | ||
| 005 | 20250919142042.0 | ||
| 006 | m|||||o||d|||||||| | ||
| 007 | cr|||||||||||| | ||
| 008 | 140917s2015||||enk o ||1 0|eng|d | ||
| 020 | _a9781316182635 (ebook) | ||
| 020 | _z9781107102378 (hardback) | ||
| 020 | _z9781107500075 (paperback) | ||
| 040 |
_aUkCbUP _beng _erda _cUkCbUP |
||
| 050 | 0 | 0 |
_aHM533.5 _b.T95 2015 |
| 082 | 0 | 0 |
_a302.34072/7 _223 |
| 245 | 0 | 0 |
_aTwitter : _ba digital socioscope / _cedited by Yelena Mejova, Qatar Computing Research Institute, Ingmar Weber, Qatar Computing Research Institute, Michael W. Macy, Cornell University, Itha, New York. |
| 264 | 1 |
_aCambridge : _bCambridge University Press, _c2015. |
|
| 300 |
_a1 online resource (x, 173 pages) : _bdigital, PDF file(s). |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 500 | _aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). | ||
| 505 | 0 | 0 |
_tIntroduction / _rScott A. Golder and Michael W. Macy -- _g1. _tAnalyzing Twitter data / _rShamanth Kumar, Fred Morstatter, and Huan Liu -- _g2. _tPolitical opinion / _rDaniel Gayo-Avello -- _g3. _tSocioeconomic indicators / _rHuina Mao -- _g4. _tHyperlocal happiness from tweets / _rDaniele E. Quercia -- _g5. _tPublic health / _rPatty Kostkova -- _g6. _tDisaster monitoring / _rBella Robinson, Robert Power, and Mark Cameron. |
| 520 | _aHow can Twitter data be used to study individual-level human behavior and social interaction on a global scale? This book introduces readers to the methods, opportunities, and challenges of using Twitter data to analyze phenomena ranging from the number of people infected by the flu, to national elections, to tomorrow's stock prices. Each chapter, written by leading domain experts in clear and accessible language, takes the reader to the forefront of the newly emerging field of computational social science. An introductory chapter on Twitter data analysis provides an overview of key tools and skills, and gives pointers on how to get started, while the case studies demonstrate shortcomings, limitations, and pitfalls of Twitter data as well as its advantages. The book will be an excellent resource for social science students and researchers wanting to explore the use of online data. | ||
| 630 | 0 | 0 | _aTwitter. |
| 650 | 0 | _aDyadic data analysis (Social sciences) | |
| 650 | 0 | _aWebometrics. | |
| 650 | 0 |
_aSocial sciences _xResearch _xMethodology. |
|
| 650 | 0 |
_aOnline social networks _xResearch. |
|
| 700 | 1 |
_aMacy, Michael W., _eeditor. |
|
| 700 | 1 |
_aMejova, Yelena, _d1985- _eeditor. |
|
| 700 | 1 |
_aWeber, Ingmar, _d1978- _eeditor. |
|
| 776 | 0 | 8 |
_iPrint version: _z9781107102378 |
| 856 | 4 | 0 | _uhttps://doi.org/10.1017/CBO9781316182635 |
| 907 |
_a.b16844828 _b2020-12-22 _c2020-12-22 |
||
| 942 | _n0 | ||
| 998 |
_a1 _b2020-12-22 _cm _da _feng _genk _y0 _z.b16844828 |
||
| 999 |
_c651825 _d651825 |
||