000 02776cam a2200613Ma 4500
001 ocn965139878
005 20250919141834.0
006 m o d
007 cr |n|||||||||
008 161202s2016 enk ob 001 0 eng d
020 _a9781119136828
_q(electronic bk.)
020 _a1119136822
_q(electronic bk.)
020 _a1119136849
_q(electronic bk.)
020 _a9781119136842
_q(electronic bk.)
020 _z1848218133
020 _z1119136830
020 _z1119136822
020 _z9781848218130
035 _a(OCoLC)965139878
_z(OCoLC)964526287
037 _a972903
_bMIL
040 _aIDEBK
_beng
_epn
_cIDEBK
_dOCLCQ
_dNST
_dDG1
_dIDEBK
_dRECBK
_dOCLCF
_dNST
049 _aMAIN
050 4 _aTP370.5
072 7 _aTEC
_x012000
_2bisacsh
082 0 4 _a664.001/5118
_223
100 1 _aLutton, Evelyne.
245 1 0 _aEvolutionary algorithms for food science and technology /
_cEvelyne Lutton, Nathalie Perrot, Alberto Tonda.
264 1 _aLondon, UK :
_bISTE, Ltd. ;
_c2016.
264 1 _aHoboken, NJ :
_bWiley,
_c2016.
300 _a1 online resource (200 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMetaheuristics set ;
_vv. 7
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
520 _aResearchers and practitioners in food science and technology routinely face several challenges, related to sparseness and heterogeneity of data, as well as to the uncertainty in the measurements and the introduction of expert knowledge in the models. Evolutionary algorithms (EAs), stochastic optimization techniques loosely inspired by natural selection, can be effectively used to tackle these issues. In this book, we present a selection of case studies where EAs are adopted in real-world food applications, ranging from model learning to sensitivity analysis.
650 0 _aFood industry and trade
_xMathematical models.
650 0 _aEvolutionary computation.
650 7 _aCOMPUTERS / Computer Engineering.
_2bisacsh
650 7 _aEvolutionary computation.
_2fast
_0(OCoLC)fst00917338
650 7 _aFood industry and trade
_xMathematical models.
_2fast
_0(OCoLC)fst00930902
650 7 _aTECHNOLOGY & ENGINEERING / Food Science
_2bisacsh
655 4 _aElectronic books.
700 1 _aPerrot, Nathalie.
700 1 _aTonda, Alberto.
830 0 _aMetaheuristics set ;
_vv. 7.
856 4 0 _uhttps://eresourcesptsl.ukm.remotexs.co/user/login?url=https://doi.org/10.1002/9781119136828
_zWiley Online Library
907 _a.b16815178
_b2022-11-01
_c2020-07-17
942 _n0
998 _ae
_b2020-07-17
_cm
_dz
_feng
_genk
_y0
_z.b16815178
999 _c648927
_d648927