| 000 | 05355cam a22006858i 4500 | ||
|---|---|---|---|
| 005 | 20250919140359.0 | ||
| 006 | m o d | ||
| 007 | cr ||||||||||| | ||
| 008 | 190918s2017 nju o 001 0 eng | ||
| 010 | _a2017-018820 | ||
| 020 |
_a9781119186281 _q(electronic bk.) |
||
| 020 |
_a1119186285 _q(electronic bk.) |
||
| 020 |
_a9781119186304 _q(electronic bk. : oBook) |
||
| 020 |
_a1119186307 _q(electronic bk. : oBook) |
||
| 020 | _z9781119186298 | ||
| 020 | _z1119186293 | ||
| 020 | _z9781119184874 (cloth) | ||
| 035 |
_a(OCoLC)983786602 _z(OCoLC)1003066335 |
||
| 035 | _a(OCoLC)ocn983786602 | ||
| 039 | 9 |
_a201911050902 _bmurni _y09-18-2019 _zhafiz _wUKM UBCM Wiley MARC (363 titles).mrc _x314 |
|
| 040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dNST _dIDEBK _dEBLCP _dDG1 _dMERER _dOTZ _dGZM _dYDX _dUAB |
||
| 042 | _apcc | ||
| 049 | _aMAIN | ||
| 050 | 1 | 0 | _aTP156.T7 |
| 072 | 7 |
_aSCI _x013060 _2bisacsh |
|
| 072 | 7 |
_aTEC _x009010 _2bisacsh |
|
| 082 | 0 | 0 |
_a660/.299 _223 |
| 100 | 1 |
_aKee, R. J., _eauthor. |
|
| 245 | 1 | 0 |
_aChemically reacting flow : _btheory, modeling, and simulation / _cRobert J. Kee, Michael E. Coltrin, Peter Glarborg, Huayang Zhu. |
| 250 | _aSecond edition. | ||
| 263 | _a1708 | ||
| 264 | 1 |
_aHoboken, NJ : _bJohn Wiley & Sons, _c2017. |
|
| 300 | _a1 online resource. | ||
| 336 |
_atext _2rdacontent |
||
| 337 |
_acomputer _2rdamedia |
||
| 338 |
_aonline resource _2rdacarrier |
||
| 500 | _aIncludes index. | ||
| 505 | 8 | _a2.3.1 Viscosity2.3.2 Diffusion Coefficients; 2.3.3 Thermal Conductivity; 2.3.4 Ideal Gases; References; 3 FLUID KINEMATICS; 3.1 Path to Conservation Equations; 3.2 System and Control Volume; 3.2.1 Extensive and Intensive Variables; 3.2.2 Reynolds Transport Theorem; 3.2.3 Substantial Derivative; 3.2.4 Substantial Derivative of a Scalar Field; 3.2.5 Fluid Acceleration, Substantial Derivative of Velocity; 3.3 Stress and Strain Rate; 3.4 Fluid Strain Rate; 3.4.1 The z-r Projection; 3.4.2 The r-[theta] Projection; 3.4.3 The z-[theta] Projection; 3.4.4 Strain-Rate Tensor; 3.5 Vorticity; 3.6 Dilatation | |
| 505 | 0 | _aCHEMICALLY REACTING FLOW; Contents; Preface; Acknowledgments; 1 INTRODUCTION; 1.1 Foregoing Texts; 1.2 Objectives and Approach; 1.3 What is a Fluid?; 1.3.1 Continuum Velocity; 1.3.2 Mean-Free Path; 1.3.3 Range of Scales; 1.4 Chemically Reacting Fluid Flow; 1.5 Physical Chemistry; 1.6 Illustrative Examples; References; 2 FLUID PROPERTIES; 2.1 Equations of State; 2.1.1 Ideal Gas; 2.1.2 Compressibility; 2.1.3 Virial Equation of State; 2.1.4 Cubic Equation of State; 2.1.5 Redlich-Kwong Equation of State; 2.2 Thermodynamics; 2.2.1 Ideal Gas; 2.2.2 Real Gas; 2.3 Transport Properties | |
| 505 | 8 | _a3.7 Stress Tensor3.7.1 Stress Vectors and Tensors; 3.7.2 Differential Cylindrical Element; 3.7.3 Stress-Tensor Symmetry; 3.7.4 Net Force from Stress on Control Surfaces; 3.7.5 Forces on a Differential Element; 3.8 Stokes Postulates; 3.8.1 Static Fluid; 3.8.2 Principal Stress-Strain-Rate Relationships; 3.9 Transformation from Principal Coordinates; 3.9.1 Physically Based Transformation; 3.10 Stokes Hypothesis; 3.11 Summary; 4 CONSERVATION EQUATIONS; 4.1 Mass Continuity; 4.1.1 Stream Function; 4.1.2 Axisymmetric Stream Function; 4.1.3 Polar Stream Function; 4.2 Navier-Stokes Equations | |
| 505 | 8 | _a4.2.1 Constant Viscosity, General Vector Form4.2.2 Cylindrical Coordinates, Constant Viscosity; 4.2.3 Incompressible Flow; 4.2.4 Incompressible, Constant Viscosity; 4.3 Species Diffusion; 4.3.1 Mass and Mole Measures; 4.3.2 Diffusive Mass Flux; 4.3.3 Stefan-Maxwell Equations; 4.4 Species Conservation; 4.4.1 Conservation Law for Individual Species; 4.4.2 Cylindrical Differential Control Volume; 4.4.3 Continuity in Terms of Composition Gradients; 4.4.4 Summation of Species Continuity; 4.5 Conservation of Energy; 4.5.1 Heat-Transfer Rate; 4.5.2 Rate of Work | |
| 505 | 8 | _a4.5.3 Total Energy Equation in Vector Form4.6 Mechanical Energy; 4.7 Thermal Energy; 4.7.1 Dissipation Function; 4.7.2 Thermal Energy Equation; 4.7.3 Ideal Gas; 4.7.4 Cylindrical Coordinates, Ideal Gas; 4.7.5 Incompressible, Single-Component Fluid; 4.8 Ideal Gas and Incompressible Fluid; 4.9 Conservation Equation Summary; 4.9.1 General Vector Form; 4.9.2 Ideal Gas, Cylindrical Coordinates; 4.10 Pressure Filtering; 4.11 Helmholtz Decomposition; 4.12 Potential Flow; 4.13 Vorticity Transport; 4.13.1 Pressure and Vorticity Fields; 4.13.2 Stream Function and Vorticity | |
| 588 | _aDescription based on print version record and CIP data provided by publisher; resource not viewed. | ||
| 650 | 0 | _aTransport theory. | |
| 650 | 0 | _aFluid dynamics. | |
| 650 | 0 | _aThermodynamics. | |
| 655 | 4 | _aElectronic books. | |
| 700 | 1 |
_aColtrin, Michael Elliott, _d1953- _eauthor. |
|
| 700 | 1 |
_aGlarborg, Peter, _eauthor. |
|
| 700 | 1 |
_aZhu, Huayang, _eauthor. |
|
| 773 | 0 | _tWiley e-books | |
| 776 | 0 | 8 |
_iPrint version: _aKee, R. J., author. _tChemically reacting flow _bSecond edition. _dHoboken, NJ : John Wiley & Sons, 2017 _z9781119184874 _w(DLC) 2017011676 |
| 856 | 4 | 0 |
_uhttps://eresourcesptsl.ukm.remotexs.co/user/login?url=https://doi.org/10.1002/9781119186304 _zWiley Online Library |
| 907 |
_a.b16758122 _b2022-10-06 _c2019-11-12 |
||
| 942 | _n0 | ||
| 914 | _avtls003651469 | ||
| 998 |
_ae _b2019-05-09 _cm _dz _feng _gnju _y0 _z.b16758122 |
||
| 999 |
_c643699 _d643699 |
||