000 02336nam a22003738i 4500
005 20250919090118.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 170308s2015||||enk o ||1 0|eng|d
020 _a9781316227619 (ebook)
020 _z9781107107359 (hardback)
035 _a(UkCbUP)CR9781316227619
039 9 _y03-08-2017
_zhafiz
040 _aUkCbUP
_beng
_erda
_cUkCbUP
100 1 _aMattila, Pertti,
_eauthor.
245 1 0 _aFourier Analysis and Hausdorff Dimension /
_cPertti Mattila.
246 3 _aFourier Analysis & Hausdorff Dimension
264 1 _aCambridge :
_bCambridge University Press,
_c2015.
300 _a1 online resource (452 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aCambridge Studies in Advanced Mathematics ;
_v150
500 _aTitle from publisher's bibliographic system (viewed on 07 Mar 2017).
520 _aDuring the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
776 0 8 _iPrint version:
_z9781107107359
830 0 _aCambridge Studies in Advanced Mathematics ;
_v150.
856 4 0 _uhttps://eresourcesptsl.ukm.remotexs.co/user/login?url=https://doi.org/10.1017/CBO9781316227619
907 _a.b16441710
_b2022-10-14
_c2019-11-12
942 _n0
914 _avtls003618470
998 _anone
_b2017-08-03
_cm
_da
_feng
_genk
_y0
_z.b16441710
999 _c617387
_d617387