| 000 | 07384cam a2200913Ii 4500 | ||
|---|---|---|---|
| 005 | 20250919085810.0 | ||
| 006 | m o d | ||
| 007 | cr cnu|||unuuu | ||
| 008 | 161221s2015 ne a ob 001 0 eng d | ||
| 020 |
_a9780128016787 _qelectronic bk. |
||
| 020 |
_a0128016787 _qelectronic bk. |
||
| 020 | _z9780128013700 | ||
| 020 | _a0128013702 | ||
| 020 | _a9780128013700 | ||
| 029 | 1 |
_aNLGGC _b39253603X |
|
| 029 | 1 |
_aNZ1 _b15969494 |
|
| 029 | 1 |
_aCHVBK _b336364695 |
|
| 029 | 1 |
_aCHDSB _b006407176 |
|
| 029 | 1 |
_aCHVBK _b34178124X |
|
| 029 | 1 |
_aCHBIS _b010547792 |
|
| 029 | 1 |
_aDEBSZ _b449490386 |
|
| 029 | 1 |
_aDEBSZ _b451525396 |
|
| 029 | 1 |
_aGBVCP _b823581543 |
|
| 029 | 1 |
_aDEBBG _bBV043619938 |
|
| 035 |
_a(OCoLC)906699032 _z(OCoLC)908100768 |
||
| 035 | _a(OCoLC)ocn906699032 | ||
| 039 | 9 |
_y12-21-2016 _zhafiz _wmetacoll.MYUKM.updates.D20160920.T210208.sdallbooks.1 (perolehan)hafizupload21122016.mrc _x134 |
|
| 040 |
_aNST _beng _erda _epn _cNST _dNST _dIDEBK _dOPELS _dE7B _dYDXCP _dCOO _dCDX _dCHVBK _dEBLCP _dDEBSZ |
||
| 049 | _aMAIN | ||
| 050 | 4 | _aQH541.15.S72 | |
| 072 | 7 |
_aNAT _x010000 _2bisacsh |
|
| 072 | 7 |
_aNAT _x045040 _2bisacsh |
|
| 072 | 7 |
_aSCI _x026000 _2bisacsh |
|
| 072 | 7 |
_aSCI _x020000 _2bisacsh |
|
| 082 | 0 | 4 |
_a577.01/5195 _223 |
| 100 | 1 |
_aKorner-Nievergelt, Franzi, _eauthor. |
|
| 245 | 1 | 0 |
_aBayesian data analysis in ecology using linear models with R, BUGS, and Stan / _cFr衮zi Korner-Nievergelt [and five others]. |
| 264 | 1 |
_aAmsterdam ; _aBoston : _bAcademic Press, an imprint of Elsevier, _c[2015] |
|
| 300 |
_a1 online resource : _billustrations |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 504 | _aIncludes bibliographical references and index. | ||
| 505 | 0 | _aFront Cover; Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan; Copyright; Contents; Digital Assets; Acknowledgments; Chapter 1 -- Why do we Need Statistical Models and What is this Book About?; 1.1 WHY WE NEED STATISTICAL MODELS; 1.2 WHAT THIS BOOK IS ABOUT; FURTHER READING; Chapter 2 -- Prerequisites and Vocabulary; 2.1 SOFTWARE; 2.2 IMPORTANT STATISTICAL TERMS AND HOW TO HANDLE THEM IN R; FURTHER READING; Chapter 3 -- The Bayesian and the Frequentist Ways of Analyzing Data; 3.1 SHORT HISTORICAL OVERVIEW; 3.2 THE BAYESIAN WAY; 3.3 THE FREQUENTIST WAY | |
| 505 | 8 | _a3.4 COMPARISON OF THE BAYESIAN AND THE FREQUENTIST WAYSFURTHER READING; Chapter 4 -- Normal Linear Models; 4.1 LINEAR REGRESSION; 4.2 REGRESSION VARIANTS: ANOVA, ANCOVA, AND MULTIPLE REGRESSION; FURTHER READING; Chapter 5 -- Likelihood; 5.1 THEORY; 5.2 THE MAXIMUM LIKELIHOOD METHOD; 5.3 THE LOG POINTWISE PREDICTIVE DENSITY; FURTHER READING; Chapter 6 -- Assessing Model Assumptions: Residual Analysis; 6.1 MODEL ASSUMPTIONS; 6.2 INDEPENDENT AND IDENTICALLY DISTRIBUTED; 6.3 THE QQ PLOT; 6.4 TEMPORAL AUTOCORRELATION; 6.5 SPATIAL AUTOCORRELATION; 6.6 HETEROSCEDASTICITY; FURTHER READING | |
| 505 | 8 | _aChapter 7 -- Linear Mixed Effects Models7.1 BACKGROUND; 7.2 FITTING A LINEAR MIXED MODEL IN R; 7.3 RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION; 7.4 ASSESSING MODEL ASSUMPTIONS; 7.5 DRAWING CONCLUSIONS; 7.6 FREQUENTIST RESULTS; 7.7 RANDOM INTERCEPT AND RANDOM SLOPE; 7.8 NESTED AND CROSSED RANDOM EFFECTS; 7.9 MODEL SELECTION IN MIXED MODELS; FURTHER READING; Chapter 8 -- Generalized Linear Models; 8.1 BACKGROUND; 8.2 BINOMIAL MODEL; 8.3 FITTING A BINARY LOGISTIC REGRESSION IN R; 8.4 POISSON MODEL; FURTHER READING; Chapter 9 -- Generalized Linear Mixed Models; 9.1 BINOMIAL MIXED MODEL | |
| 505 | 8 | _a9.2 POISSON MIXED MODELFURTHER READING; Chapter 10 -- Posterior Predictive Model Checking and Proportion of Explained Variance; 10.1 POSTERIOR PREDICTIVE MODEL CHECKING; 10.2 MEASURES OF EXPLAINED VARIANCE; FURTHER READING; Chapter 11 -- Model Selection and Multimodel Inference; 11.1 WHEN AND WHY WE SELECT MODELS AND WHY THIS IS DIFFICULT; 11.2 METHODS FOR MODEL SELECTION AND MODEL COMPARISONS; 11.3 MULTIMODEL INFERENCE; 11.4 WHICH METHOD TO CHOOSE AND WHICH STRATEGY TO FOLLOW; FURTHER READING; Chapter 12 -- Markov Chain Monte Carlo Simulation; 12.1 BACKGROUND; 12.2 MCMC USING BUGS | |
| 505 | 8 | _a12.3 MCMC USING STAN12.4 SIM, BUGS, AND STAN; FURTHER READING; Chapter 13 -- Modeling Spatial Data Using GLMM; 13.1 BACKGROUND; 13.2 MODELING ASSUMPTIONS; 13.3 EXPLICIT MODELING OF SPATIAL AUTOCORRELATION; FURTHER READING; Chapter 14 -- Advanced Ecological Models; 14.1 HIERARCHICAL MULTINOMIAL MODEL TO ANALYZE HABITAT SELECTION USING BUGS; 14.2 ZERO-INFLATED POISSON MIXED MODEL FOR ANALYZING BREEDING SUCCESS USING STAN; 14.3 OCCUPANCY MODEL TO MEASURE SPECIES DISTRIBUTION USING STAN; 14.4 TERRITORY OCCUPANCY MODEL TO ESTIMATE SURVIVAL USING BUGS | |
| 520 | _aBayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions-including all R codes-that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. | ||
| 588 | 0 | _aOnline resource; title from PDF title page (Ebsco, viewed April 9, 2015). | |
| 590 |
_aElsevier _bScienceDirect All Books |
||
| 630 | 0 | 0 | _aBUGS (Information storage and retrieval system) |
| 650 | 0 |
_aEcology _xResearch _xStatistical methods. |
|
| 650 | 0 | _aBayesian statistical decision theory. | |
| 650 | 0 | _aR (Computer program language) | |
| 650 | 7 |
_aNATURE / Ecology _2bisacsh |
|
| 650 | 7 |
_aNATURE / Ecosystems & Habitats / Wilderness _2bisacsh |
|
| 650 | 7 |
_aSCIENCE / Environmental Science _2bisacsh |
|
| 650 | 7 |
_aSCIENCE / Life Sciences / Ecology _2bisacsh |
|
| 650 | 7 |
_a菫ologie. _0(DE-588)4043207-5 _2gnd |
|
| 650 | 7 |
_aDatenverarbeitung. _0(DE-588)4011152-0 _2gnd |
|
| 650 | 7 |
_aBayes-Verfahren. _0(DE-588)4204326-8 _2gnd |
|
| 650 | 7 |
_aBiostatistik. _0(DE-588)4729990-3 _2gnd |
|
| 650 | 7 |
_aR. _0(DE-588)4705956-4 _2gnd |
|
| 650 | 7 |
_aGibbs-sampling. _0(DE-588)4352359-6 _2gnd |
|
| 650 | 4 | _aBayesian statistical decision theory. | |
| 650 | 4 | _aEcology -- Research -- Statistical methods. | |
| 650 | 4 | _aEcology -- Study and teaching. | |
| 655 | 4 | _aElectronic books. | |
| 655 | 0 | _aElectronic books. | |
| 776 | 0 | 8 |
_iPrint version: _tBayesian data analysis in ecology using linear models with R, BUGS, and Stan. _dAmsterdam, [Netherlands] : Academic Press, c2015 _hxii, 316 pages _z9780128013700 _w2014957273 |
| 856 | 4 | 0 | _uhttp://ezplib.ukm.my/login?url=http://www.sciencedirect.com/science/book/9780128013700 |
| 907 |
_a.b16400525 _b2021-06-25 _c2019-11-12 |
||
| 942 | _n0 | ||
| 914 | _avtls003614157 | ||
| 998 |
_ae _b2016-08-12 _cm _dz _feng _gne _y0 _z.b16400525 |
||
| 999 |
_c613438 _d613438 |
||