000 02338cam a22004218i 4500
005 20250919011649.0
008 160328s2014 flu b 001 0 eng
020 _a9781482226669
_qhardback
_cRM458.09
039 9 _a201606231233
_bbaiti
_c201606201459
_dlatihan
_c201606201458
_dlatihan
_c201606100853
_dros
_y03-28-2016
_zros
040 _aDLC
_beng
_cDLC
_erda
_dUKM
_erda
090 _aQ342.C64 3
090 _aQ342
_b.C64 3
245 0 0 _aComputational trust models and machine learning /
_ceditors, Xin Liu, Anwitaman Datta, Ee-Peng Lim.
264 1 _aBoca Raton :
_bTaylor & Francis,
_c2015
264 4 _c©2015.
300 _axxiv, 208 pages :
_billustrations ;
_c24 cm.
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
490 1 _aChapman & Hall/CRC machine learning & pattern recognition series
504 _aIncludes bibliographical references and index.
520 _a'This book provides an introduction to computational trust models from a machine learning perspective. After reviewing traditional computational trust models, it discusses a new trend of applying formerly unused machine learning methodologies, such as supervised learning. The application of various learning algorithms, such as linear regression, matrix decomposition, and decision trees, illustrates how to translate the trust modeling problem into a (supervised) learning problem. The book also shows how novel machine learning techniques can improve the accuracy of trust assessment compared to traditional approaches'--
_cProvided by publisher.
650 0 _aComputational intelligence.
650 0 _aMachine learning.
650 0 _aTruthfulness and falsehood
_xMathematical models.
700 1 _aLiu, Xin
_c(Mathematician),
_eeditor.
700 1 _aDatta, Anwitaman,
_eeditor.
700 1 _aLim, Ee-Peng,
_eeditor.
830 0 _aChapman & Hall/CRC machine learning & pattern recognition series
907 _a.b1629760x
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kQ342.C64 3
914 _avtls003603070
990 _aasr
991 _aFakulti Teknologi dan Sains Maklumat
998 _al
_b2016-02-03
_cm
_da
_feng
_gflu
_y0
_z.b1629760x
999 _c607329
_d607329