000 02209nam a2200397 i 4500
005 20250919004354.0
008 150507t20132013flua b 001 0 eng
020 _a9781439873106 (alk. paper)
_cRM371.52
020 _a1439873100 (alk. paper)
039 9 _a201507271507
_brosli
_c201507271504
_drosli
_c201507221131
_dhamudah
_y05-07-2015
_zhamudah
040 _aDLC
_beng
_erda
_cDLC
_dYDX
_dOCLCO
_dYDXCP
_dOCLCF
_dUKM
_erda
090 _aQA251.5.S238
090 _aQA251.5
_b.S238
100 1 _aSatyanarayana, Bhavanari.
245 1 0 _aNear rings, fuzzy ideals, and graph theory /
_cBhavanari Satyanarayana, Kuncham Syam Prasad.
264 1 _aBoca Raton :
_bCRC Press, Taylor & Francis Group,
_c[2013].
264 4 _c©2013.
300 _axi, 468 pages :
_billustrations ;
_c24 cm.
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
504 _aIncludes bibliographical references (pages 453-458) and index.
520 _a''Nearrings, Fuzzy Ideals and Graph Theory' is a very fascinating course to learn and show. Nearring Theory has enormous applications in different subject areas like digital computing, sequential mechanics, automata theory, graph theory and combinatorics. The first step towards nearrings was an axiomatic research done by Dickson in 1905. He exhibited that there do exist'fields with only one distributive law'. Nearrings arise in a natural way, take the set M(G) of all mappings of a group (G, +) into itself, define addition'+' and point-wisely and'o' as composition of mappings. Another example is that set of all polynomials with addition and substitution'--
_cProvided by publisher.
650 0 _aNear-rings.
650 0 _aFuzzy sets.
650 0 _aGraph theory.
700 1 _aPrasad, Kuncham Syam.
907 _a.b16138181
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kQA251.5.S238
914 _avtls003585727
990 _ark4
991 _aFakulti Sains dan Teknologi
998 _at
_b2015-07-05
_cm
_da
_feng
_gflu
_y0
_z.b16138181
999 _c591871
_d591871