000 02395nam a22004218i 4500
005 20250919002920.0
008 150410s2014 nju bi 001 0 eng
020 _a9781118362082
_qhardback
_cRM411.21
039 9 _a201507021558
_blan
_c201507020958
_dlan
_c201506181156
_drahah
_y04-10-2015
_zrahah
040 _aDLC
_beng
_cDLC
_erda
_dUKM
090 _aQ325.6.S277 3
090 _aQ325.6
_b.S277 3
100 1 _aSchwartz, Howard M.,
_eeditor.
245 1 0 _aMulti-agent machine learning :
_ba reinforcement approach /
_cHoward M. Schwartz.
246 1 8 _ispine title :
_aMulti-agent machine learning.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons Inc.,
_c[2014].
264 4 _c©2014.
300 _axi, 242 pages :
_billustrations ;
_c24 cm.
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a'Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering'--
_cProvided by publisher.
520 _a'Provide an in-depth coverage of multi-player, differential games and Gam theory'--
_cProvided by publisher.
650 0 _aReinforcement learning.
650 0 _aDifferential games.
650 0 _aSwarm intelligence.
650 0 _aMachine learning.
856 4 2 _3Cover image
_uhttp://catalogimages.wiley.com/images/db/jimages/9781118362082.jpg.
907 _a.b16117852
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kQ325.6.S277 3
914 _avtls003583484
990 _arab
991 _aFakulti Kejuruteraan dan Seni Bina
998 _al
_b2015-10-04
_cm
_da
_feng
_gnju
_y0
_z.b16117852
999 _c590746
_d590746