| 000 | 09464nam a2200481 i 4500 | ||
|---|---|---|---|
| 005 | 20250919002821.0 | ||
| 008 | 150324t20152015maua bi 001 0 eng | ||
| 020 |
_a9781284049190 (paperback) _cRM577.96 |
||
| 020 | _a1284049191 (paperback) | ||
| 039 | 9 |
_a201506100901 _blan _c201506050859 _dlan _c201506050858 _dlan _c201506050858 _dlan _y03-24-2015 _zhamudah |
|
| 040 |
_aDLC _beng _erda _cDLC _dYDX _dYDXCP _dINU _dOCLCF _dNLGGC _dCDX _dUKM _erda |
||
| 090 | _aQA9.58.N433 2015 | ||
| 090 |
_aQA9.58 _b.N433 2015 |
||
| 100 | 1 |
_aNeapolitan, Richard E., _eauthor. |
|
| 245 | 1 | 0 |
_aFoundations of algorithms / _cRichard E. Neapolitan, PhD, Northwestern University. |
| 250 | _aFifth edition. | ||
| 264 | 1 |
_aBurlington, MA : _bJones & Bartlett Learning, _c[2015]. |
|
| 264 | 4 | _c© 2015. | |
| 300 |
_axvii, 676 pages : _billustrations ; _c24 cm. |
||
| 336 |
_atext _2rdacontent |
||
| 337 |
_aunmediated _2rdamedia |
||
| 338 |
_avolume _2rdacarrier |
||
| 504 | _aIncludes bibliographical references (pages 653-658) and index. | ||
| 505 | 0 |
_gMachine generated contents note: _g1. _tAlgorithms: Efficiency, Analysis, and Order -- _g1.1. _tAlgorithms -- _g1.2. _tThe Importance of Developing Efficient Algorithms -- _g1.2.1. _tSequential Search Versus Binary Search -- _g1.2.2. _tThe Fibonacci Sequence -- _g1.3. _tAnalysis of Algorithms -- _g1.3.1. _tComplexity Analysis -- _g1.3.2. _tApplying the Theory -- _g1.3.3. _tAnalysis of Correctness -- _g1.4. _tOrder -- _g1.4.1. _tAn Intuitive Introduction to Order -- _g1.4.2. _tA Rigorous Introduction to Order -- _g1.4.3. _tUsing a Limit to Determine Order -- _g1.5. _tOutline of This Book -- _tExercises -- _g2. _tDivide-and-Conquer -- _g2.1. _tBinary Search -- _g2.2. _tMergesort -- _g2.3. _tThe Divide-and-Conquer Approach -- _g2.4. _tQuicksort (Partition Exchange Sort) -- _g2.5. _tStrassen's Matrix Multiplication Algorithm -- _g2.6. _tArithmetic with Large Integers -- _g2.6.1. _tRepresentation of Large Integers: Addition and Other Linear-Time Operations. |
|
| 505 | 0 |
_g2.6.2. _tMultiplication of Large Integers -- _g2.7. _tDetermining Thresholds -- _g2.8. _tWhen Not to Use Divide-and-Conquer -- _tExercises -- _g3. _tDynamic Programming -- _g3.1. _tThe Binomial Coefficient -- _g3.2. _tFloyd's Algorithm for Shortest Paths -- _g3.3. _tDynamic Programming and Optimization Problems -- _g3.4. _tChained Matrix Multiplication -- _g3.5. _tOptimal Binary Search Trees -- _g3.6. _tThe Traveling Salesperson Problem -- _g3.7. _tSequence Alignment -- _tExercises -- _g4. _tThe Greedy Approach -- _g4.1. _tMinimum Spanning Trees -- _g4.1.1. _tPrim's Algorithm -- _g4.1.2. _tKruskal's Algorithm -- _g4.1.3. _tComparing Prim's Algorithm with Kruskal's Algorithm -- _g4.1.4. _tFinal Discussion -- _g4.2. _tDijkstra's Algorithm for Single-Source Shortest Paths -- _g4.3. _tScheduling -- _g4.3.1. _tMinimizing Total Time in the System -- _g4.3.2. _tScheduling with Deadlines -- _g4.4. _tHuffman Code -- _g4.4.1. _tPrefix Codes -- _g4.4.2. _tHuffman's Algorithm -- _g4.5. _tThe Greedy Approach versus Dynamic Programming: The Knapsack Problem. |
|
| 505 | 0 |
_g4.5.1. _tA Greedy Approach to the 0-1 Knapsack Problem -- _g4.5.2. _tA Greedy Approach to the Fractional Knapsack Problem -- _g4.5.3. _tA Dynamic Programming Approach to the 0-1 Knapsack Problem -- _g4.5.4. _tA Refinement of the Dynamic Programming Algorithm for the 0-1 Knapsack Problem -- _tExercises -- _g5. _tBacktracking -- _g5.1. _tThe Backtracking Technique -- _g5.2. _tThe n-Queens Problem -- _g5.3. _tUsing a Monte Carlo Algorithm to Estimate the Efficiency of a Backtracking Algorithm -- _g5.4. _tThe Sum-of-Subsets Problem -- _g5.5. _tGraph Coloring -- _g5.6. _tThe Hamiltonian Circuits Problem -- _g5.7. _tThe 0-1 Knapsack Problem -- _g5.7.1. _tA Backtracking Algorithm for the 0-1 Knapsack Problem -- _g5.7.2. _tComparing the Dynamic Programming Algorithm and the Backtracking Algorithm for the 0-1 Knapsack Problem -- _tExercises -- _g6. _tBranch-and-Bound -- _g6.1. _tIllustrating Branch-and-Bound with the 0-1 Knapsack Problem -- _g6.1.1. _tBreadth-First Search with Branch-and-Bound Pruning -- _g6.1.2. _tBest-First Search with Branch-and-Bound Pruning. |
|
| 505 | 0 |
_g6.2. _tThe Traveling Salesperson Problem -- _g6.3. _tAbductive Inference (Diagnosis) -- _tExercises -- _g7. _tIntroduction to Computational Complexity: The Sorting Problem -- _g7.1. _tComputational Complexity -- _g7.2. _tInsertion Sort and Selection Sort -- _g7.3. _tLower Bounds for Algorithms that Remove at Most One Inversion per Comparison -- _g7.4. _tMergesort Revisited -- _g7.5. _tQuicksort Revisited -- _g7.6. _tHeapsort -- _g7.6.1. _tHeaps and Basic Heap Routines -- _g7.6.2. _tAn Implementation of Heapsort -- _g7.7. _tComparison of Mergesort, Quicksort, and Heapsort -- _g7.8. _tLower Bounds for Sorting Only by Comparison of Keys -- _g7.8.1. _tDecision Trees for Sorting Algorithms -- _g7.8.2. _tLower Bounds for Worst-Case Behavior -- _g7.8.3. _tLower Bounds for Average-Case Behavior -- _g7.9. _tSorting by Distribution (Radix Sort) -- _tExercises -- _g8. _tMore Computational Complexity: The Searching Problem -- _g8.1. _tLower Bounds for Searching Only by Comparisons of Keys -- _g8.1.1. _tLower Bounds for Worst-Case Behavior. |
|
| 505 | 0 |
_g8.1.2. _tLower Bounds for Average-Case Behavior -- _g8.2. _tInterpolation Search -- _g8.3. _tSearching in Trees -- _g8.3.1. _tBinary Search Trees -- _g8.3.2. _tB-Trees -- _g8.4. _tHashing -- _g8.5. _tThe Selection Problem: Introduction to Adversary Arguments -- _g8.5.1. _tFinding the Largest Key -- _g8.5.2. _tFinding Both the Smallest and Largest Keys -- _g8.5.3. _tFinding the Second-Largest Key -- _g8.5.4. _tFinding the kth-Smallest Key -- _g8.5.5. _tA Probabilistic Algorithm for the Selection Problem -- _tExercises -- _g9. _tComputational Complexity and Intractability: An Introduction to the Theory of NP -- _g9.1. _tIntractability -- _g9.2. _tInput Size Revisited -- _g9.3. _tThe Three General Problem Categories -- _g9.3.1. _tProblems for Which Polynomial-Time Algorithms Have Been Found -- _g9.3.2. _tProblems That Have Been Proven to Be Intractable -- _g9.3.3. _tProblems That Have Not Been Proven to Be Intractable but for Which Polynomial-Time Algorithms Have Never Been Found -- _g9.4. _tThe Theory of NP |
|
| 505 | 0 |
_g9.4.1. _tThe Sets P and NP -- _g9.4.2. _tNP-Complete Problems -- _g9.4.3. _tNP-Hard, NP-Easy, and NP-Equivalent Problems -- _g9.5. _tHandling NP-Hard Problems -- _g9.5.1. _tAn Approximation Algorithm for the Traveling Salesperson Problem -- _g9.5.2. _tAn Approximation Algorithm for the Bin-Packing Problem -- _tExercises -- _g10. _tGenetic Algorithms and Genetic Programming -- _g10.1. _tGenetics Review -- _g10.2. _tGenetic Algorithms -- _g10.2.1. _tAlgorithm -- _g10.2.2. _tIllustrative Example -- _g10.2.3. _tThe Traveling Salesperson Problem -- _g10.3. _tGenetic Programming -- _g10.3.1. _tIllustrative Example -- _g10.3.2. _tArtificial Ant -- _g10.3.3. _tApplication to Financial Trading -- _g10.4. _tDiscussion and Further Reading -- _tExercises -- _g11. _tNumber-Theoretic Algorithms -- _g11.1. _tNumber Theory Review -- _g11.1.1. _tComposite and Prime Numbers -- _g11.1.2. _tGreatest Common Divisor -- _g11.1.3. _tPrime Factorization -- _g11.1.4. _tLeast Common Multiple -- _g11.2. _tComputing the Greatest Common Divisor. |
|
| 505 | 0 |
_g11.2.1. _tEuclid's Algorithm -- _g11.2.2. _tAn Extension to Euclid's Algorithm -- _g11.3. _tModular Arithmetic Review -- _g11.3.1. _tGroup Theory -- _g11.3.2. _tCongruency Modulo n -- _g11.3.3. _tSubgroups -- _g11.4. _tSolving Modular Linear Equations -- _g11.5. _tComputing Modular Powers -- _g11.6. _tFinding Large Prime Numbers -- _g11.6.1. _tSearching for a Large Prime -- _g11.6.2. _tChecking if a Number Is Prime -- _g11.7. _tThe RSA Public-Key Cryptosystem -- _g11.7.1. _tPublic-Key Cryptosystems -- _g11.7.2. _tThe RSA Cryptosystem -- _tExercises -- _g12. _tIntroduction to Parallel Algorithms -- _g12.1. _tParallel Architectures -- _g12.1.1. _tControl Mechanism -- _g12.1.2. _tAddress-Space Organization -- _g12.1.3. _tInterconnection Networks -- _g12.2. _tThe PRAM Model -- _g12.2.1. _tDesigning Algorithms for the CREW PRAM Model -- _g12.2.2. _tDesigning Algorithms for the CRCW PRAM Model -- _tExercises -- _gAppendix A _tReview of Necessary Mathematics -- _gA.1. _tNotation -- _gA.2. _tFunctions -- _gA.3. _tMathematical Induction. |
|
| 505 | 0 |
_gA.4. _tTheorems and Lemmas -- _gA.5. _tLogarithms -- _gA.5.1. _tDefinition and Properties of Logarithms -- _gA.5.2. _tThe Natural Logarithm -- _gA.6. _tSets -- _gA.7. _tPermutations and Combinations -- _gA.8. _tProbability -- _gA.8.1. _tRandomness -- _gA.8.2. _tThe Expected Value -- _tExercises -- _gAppendix B _tSolving Recurrence Equations: With Applications to Analysis of Recursive Algorithms -- _gB.1. _tSolving Recurrences Using Induction -- _gB.2. _tSolving Recurrences Using the Characteristic Equation -- _gB.2.1. _tHomogeneous Linear Recurrences -- _gB.2.2. _tNonhomogeneous Linear Recurrences -- _gB.2.3. _tChange of Variables (Domain Transformations) -- _gB.3. _tSolving Recurrences by Substitution -- _gB.4. _tExtending Results for n, a Power of a Positive Constant b, to n in General -- _gB.5. _tProofs of Theorems -- _tExercises -- _gAppendix C _tData Structures for Disjoint Sets. |
|
| 650 | 0 | _aAlgorithms. | |
| 650 | 0 | _aConstructive mathematics. | |
| 650 | 0 | _aComputational complexity. | |
| 907 |
_a.b16104183 _b2019-11-12 _c2019-11-12 |
||
| 942 |
_c01 _n0 _kQA9.58.N433 2015 |
||
| 914 | _avtls003581935 | ||
| 990 | _arab | ||
| 991 | _aFakulti Sains dan Teknologi | ||
| 998 |
_at _b2015-11-03 _cm _da _feng _gmau _y0 _z.b16104183 |
||
| 999 |
_c589466 _d589466 |
||