| 000 | 02020nam a22003137a 4500 | ||
|---|---|---|---|
| 005 | 20250918232719.0 | ||
| 008 | 131212s2012 enka b 001 0 eng d | ||
| 020 |
_a9781107096394 (hbk.) _cRM387.00 |
||
| 039 | 9 |
_a201401070957 _brosli _y12-12-2013 _zrahah |
|
| 040 |
_aUKMGB _beng _cUKMGB _dBTCTA _dOCLCO _dBDX _dYDXCP _dCDX _dZWZ _dEYM _dTEF _dJHE _dMUU _dDLC _dUKM |
||
| 090 | _aQ325.5.F533 3 | ||
| 090 |
_aQ325.5 _b.F533 3 |
||
| 100 | 1 | _aFlach, Peter A. | |
| 245 | 1 | 0 |
_aMachine learning : _bthe art and science of algorithms that make sense of data / _cPeter Flach. |
| 260 |
_aCambridge : _bCambridge University Press, _c2012. |
||
| 300 |
_axvii, 396 p. : _bcol. ill. ; _c25 cm. |
||
| 504 | _aIncludes bibliographical references (p. 367-381) and index. | ||
| 505 | 0 | _a1. The ingredients of machine learning -- 2. Binary classification and related tasks -- 3. Beyond binary classification -- 4. Concept learning -- 5. Tree models -- 6. Rule models -- 7. Linear models -- 8. Distance-based models -- 9. Probabilistic models -- 10. Features -- 11. Model ensembles -- 12. Machine learning experiments -- Epilogue: where to go from here. | |
| 520 | 3 | _a'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike. | |
| 650 | 0 |
_aMachine learning _vTextbooks. |
|
| 907 |
_a.b15787679 _b2019-11-12 _c2019-11-12 |
||
| 942 |
_c01 _n0 _kQ325.5.F533 3 |
||
| 914 | _avtls003546743 | ||
| 990 | _ark4 | ||
| 991 | _aFakulti Teknologi Sains Maklumat | ||
| 998 |
_al _b2013-12-12 _cm _da _feng _genk _y0 _z.b15787679 |
||
| 999 |
_c558898 _d558898 |
||