000 02020nam a22003137a 4500
005 20250918232719.0
008 131212s2012 enka b 001 0 eng d
020 _a9781107096394 (hbk.)
_cRM387.00
039 9 _a201401070957
_brosli
_y12-12-2013
_zrahah
040 _aUKMGB
_beng
_cUKMGB
_dBTCTA
_dOCLCO
_dBDX
_dYDXCP
_dCDX
_dZWZ
_dEYM
_dTEF
_dJHE
_dMUU
_dDLC
_dUKM
090 _aQ325.5.F533 3
090 _aQ325.5
_b.F533 3
100 1 _aFlach, Peter A.
245 1 0 _aMachine learning :
_bthe art and science of algorithms that make sense of data /
_cPeter Flach.
260 _aCambridge :
_bCambridge University Press,
_c2012.
300 _axvii, 396 p. :
_bcol. ill. ;
_c25 cm.
504 _aIncludes bibliographical references (p. 367-381) and index.
505 0 _a1. The ingredients of machine learning -- 2. Binary classification and related tasks -- 3. Beyond binary classification -- 4. Concept learning -- 5. Tree models -- 6. Rule models -- 7. Linear models -- 8. Distance-based models -- 9. Probabilistic models -- 10. Features -- 11. Model ensembles -- 12. Machine learning experiments -- Epilogue: where to go from here.
520 3 _a'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike.
650 0 _aMachine learning
_vTextbooks.
907 _a.b15787679
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kQ325.5.F533 3
914 _avtls003546743
990 _ark4
991 _aFakulti Teknologi Sains Maklumat
998 _al
_b2013-12-12
_cm
_da
_feng
_genk
_y0
_z.b15787679
999 _c558898
_d558898