000 01612nam a2200301 a 4500
005 20250918170639.0
008 120924s2012 enka b 001 0 eng
020 _a9781848212404 (hbk.)
_cRM439.27
039 9 _a201211061226
_bzabidah
_c201210170933
_drosli
_c201209240940
_didah
_y09-24-2012
_zidah
040 _aDLC
_cDLC
_dUKM
090 _aTA1637.S736 3
090 _aTA1637
_b.S736 3
245 0 0 _aStochastic geometry for image analysis /
_cedited by Xavier Descombes.
260 _aLondon :
_bWiley,
_c2012.
300 _ax, 345 p. :
_bill. ;
_c24 cm
504 _aIncludes bibliographical references and index.
520 _a'This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling'--
_cProvided by publisher.
650 0 _aImage processing
_xStatistical methods.
650 0 _aStochastic geometry.
700 1 _aDescombes, Xavier.
907 _a.b15478488
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kTA1637.S736 3
914 _avtls003513296
990 _ark4
991 _aFakulti Kejuruteraan dan Alam Bina
998 _al
_b2012-11-09
_cm
_da
_feng
_genk
_y0
_z.b15478488
999 _c531012
_d531012