000 01718nam a2200409 a 4500
005 20250913113743.0
008 981208c19749999xxka 00 eng
020 _a0335055508
039 9 _a200711231128
_baida
_c200711221244
_daida
_c199910141245
_dstaff
_y08-18-1999
_zload
090 _aAS122.O6M332[00008000514]
090 _aAS122.O6
_bM332
245 0 0 _aComplex analysis /
_cprepared by the course team
260 _aMilton Keynes :
_bThe Open University Press,
_c1974
300 _av. :
_bill. ;
_c30 cm.
505 _gunit 1.
_tComplex numbers -
_gunit 2.
_tContinuous functions -
_gunit 3.
_tDifferentiation -
_gunit 4.
_tIntegration -
_gunit 5.
_tCauchy's theorem 1 -
_gunit 6.
_tTaylor series -
_gunit 8.
_tSingularities -
_gunit 9.
_tCauchy's theorem II -
_gunit 10.
_tThe calculus of residues -
_gunit 11.
_tAnalytic functions -
_gunit 13.
_tProperties of analytic functions
650 0 _aNumbers, Complex
650 0 _aFunctions, Continuous
650 0 _aIntegrals
740 0 _aComplex numbers ;
_nunit 1
740 0 _aContinuous functions ;
_nunit 2
740 0 _aDifferentiation ;
_nunit 3
740 0 _aIntegration ;
_nunit 4
740 0 _aCauchy's theorem 1 ;
_nunit 5
740 0 _aTaylor series ;
_nunit 6
740 0 _aSingularities ;
_nunit 8
740 0 _aCauchy's theorem II ;
_nunit 9
740 0 _aThe calculus of residues ;
_nunit 10
740 0 _aAnalytic functions ;
_nunit 11
740 0 _aProperties of analytic functions ;
_nunit 13
907 _a.b10414010
_b2021-05-28
_c2019-11-12
942 _c01
_n0
_kAS122.O6M332[00008000514]
914 _avtls000043106
990 _ano
991 _aFak Sains Matematik
998 _at
_b1999-05-08
_cm
_da
_feng
_gxxk
_y0
_z.b10414010
999 _c43363
_d43363