Amazon cover image
Image from Amazon.com

Numerical analysis for engineers and scientists / G. Miller, Department of Chemical Engineering and Materials Science, University of California, Davis.

By: Publisher: Cambridge : Cambridge University Press, 2014Description: 1 online resource (x, 572 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139108188 (ebook)
Other title:
  • Numerical Analysis for Engineers & Scientists
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 518 23
LOC classification:
  • QA297 .M526 2014
Online resources: Summary: Striking a balance between theory and practice, this graduate-level text is perfect for students in the applied sciences. The author provides a clear introduction to the classical methods, how they work and why they sometimes fail. Crucially, he also demonstrates how these simple and classical techniques can be combined to address difficult problems. Many worked examples and sample programs are provided to help the reader make practical use of the subject material. Further mathematical background, if required, is summarized in an appendix. Topics covered include classical methods for linear systems, eigenvalues, interpolation and integration, ODEs and data fitting, and also more modern ideas like adaptivity and stochastic differential equations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Striking a balance between theory and practice, this graduate-level text is perfect for students in the applied sciences. The author provides a clear introduction to the classical methods, how they work and why they sometimes fail. Crucially, he also demonstrates how these simple and classical techniques can be combined to address difficult problems. Many worked examples and sample programs are provided to help the reader make practical use of the subject material. Further mathematical background, if required, is summarized in an appendix. Topics covered include classical methods for linear systems, eigenvalues, interpolation and integration, ODEs and data fitting, and also more modern ideas like adaptivity and stochastic differential equations.

There are no comments on this title.

to post a comment.

Contact Us

Perpustakaan Tun Seri Lanang, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,Malaysia
+603-89213446 – Consultation Services
019-2045652 – Telegram/Whatsapp
Email: helpdeskptsl@ukm.edu.my

Copyright ©The National University of Malaysia Library