Amazon cover image
Image from Amazon.com

A Student's Guide to Lagrangians and Hamiltonians / Patrick Hamill.

By: Publisher: Cambridge : Cambridge University Press, 2013Description: 1 online resource (184 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781107337572 (ebook)
Other title:
  • A Student's Guide to Lagrangians & Hamiltonians
Additional physical formats: Print version: : No titleDDC classification:
  • 515/.39 23
LOC classification:
  • QA805 .H24 2014
Online resources: Summary: A concise but rigorous treatment of variational techniques, focussing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students. The book begins by applying Lagrange's equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this the book turns to the calculus of variations to derive the Euler-Lagrange equations. It introduces Hamilton's principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton's equations, canonical transformations, Poisson brackets and Hamilton-Jacobi theory are considered next. The book concludes by discussing continuous Lagrangians and Hamiltonians and how they are related to field theory. Written in clear, simple language and featuring numerous worked examples and exercises to help students master the material, this book is a valuable supplement to courses in mechanics.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Title from publisher's bibliographic system (viewed on 07 Mar 2017).

A concise but rigorous treatment of variational techniques, focussing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students. The book begins by applying Lagrange's equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this the book turns to the calculus of variations to derive the Euler-Lagrange equations. It introduces Hamilton's principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton's equations, canonical transformations, Poisson brackets and Hamilton-Jacobi theory are considered next. The book concludes by discussing continuous Lagrangians and Hamiltonians and how they are related to field theory. Written in clear, simple language and featuring numerous worked examples and exercises to help students master the material, this book is a valuable supplement to courses in mechanics.

There are no comments on this title.

to post a comment.

Contact Us

Perpustakaan Tun Seri Lanang, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,Malaysia
+603-89213446 – Consultation Services
019-2045652 – Telegram/Whatsapp
Email: helpdeskptsl@ukm.edu.my

Copyright ©The National University of Malaysia Library