Advanced state space methods for neural and clinical data / (Record no. 651692)

MARC details
000 -LEADER
fixed length control field 03935nam a22003858i 4500
001 - CONTROL NUMBER
control field CR9781139941433
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250919142038.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m|||||o||d||||||||
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr||||||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 140304s2015||||enk o ||1 0|eng|d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781139941433 (ebook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781107079199 (hardback)
040 ## - CATALOGING SOURCE
Original cataloging agency UkCbUP
Language of cataloging eng
Description conventions rda
Transcribing agency UkCbUP
050 04 - LIBRARY OF CONGRESS CALL NUMBER
Classification number RC346
Item number .A38 2015
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 616.8001/1
Edition information 23
245 00 - TITLE STATEMENT
Title Advanced state space methods for neural and clinical data /
Statement of responsibility, etc. edited by Zhe Chen.
246 3# - VARYING FORM OF TITLE
Title proper/short title Advanced State Space Methods for Neural & Clinical Data
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cambridge :
Name of producer, publisher, distributor, manufacturer Cambridge University Press,
Date of production, publication, distribution, manufacture, or copyright notice 2015.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xxii, 374 pages) :
Other physical details digital, PDF file(s).
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
500 ## - GENERAL NOTE
General note Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Inference and learning in latent Markov models / D. Barber and S. Chiappa -- State space methods for MEG source reconstruction / M. Fukushima, O. Yamashita, and M. Sato -- Autoregressive modeling of FMRI time series : state space approaches and the general linear model / A. Galka [and others] -- State space models and their spectral decomposition in dynamic causal modeling / R. Moran -- Estimating state and parameters in state space models of spike trains / J.H. Macke, L. Buesing, and M. Sahani -- Bayesian inference for latent stepping and ramping models of spike train data / K.W. Latimer, A.C. Huk, and J.W. Pillow -- Probabilistic approaches to uncover rat hippocampal population codes / Z. Chen, F. Kloosterman, and M.A. Wilson -- Neural decoding in motor cortex using state space models with hidden states / W. Wuand S. Liu -- State-space modeling for analysis of behavior in learning experiments / A.C. Smith -- Bayesian nonparametric learning of switching dynamics in cohort physiological time series : application in critical care patient monitoring / L.H. Lehman, M.J. Johnson, S. Nemati, R.P. Adams and R.G. Mark -- Identifying outcome-discriminative dynamics in multivariate physiological cohort time series / S. Nemati and R.P. Adams -- A dynamic point process framework for assessing heartbeat dynamics and cardiovascular functions / Z. Chen and R. Barbieri -- Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression / M.B. Westover, S. Ching, M.M. Shafi, S.S. Cash and E.N. Brown -- Signal quality indices for state-space electrophysiological signal processing and vice versa / J. Oster and G.D. Clifford.
520 ## - SUMMARY, ETC.
Summary, etc. This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Nervous system
General subdivision Diseases.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element State-space methods.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Chen, Zhe,
Dates associated with a name 1976-
Relator term editor.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
International Standard Book Number 9781107079199
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://doi.org/10.1017/CBO9781139941433">https://doi.org/10.1017/CBO9781139941433</a>
907 ## - LOCAL DATA ELEMENT G, LDG (RLIN)
a .b16843484
b 2020-12-22
c 2020-12-22
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Suppress in OPAC No
998 ## - LOCAL CONTROL INFORMATION (RLIN)
Library
Operator's initials, OID (RLIN) 2020-12-22
Cataloger's initials, CIN (RLIN) m
Material Type (Sierra) Printed Books
Language English
Country
-- 0
-- .b16843484

No items available.


Contact Us

Perpustakaan Tun Seri Lanang, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,Malaysia
+603-89213446 – Consultation Services
019-2045652 – Telegram/Whatsapp
Email: helpdeskptsl@ukm.edu.my

Copyright ©The National University of Malaysia Library